СЭЗИС - Бүтээлийн сан

Predictive accuracy of index volatility: GARCH family models vs. XGBoost Model

Товч мэдээллийг харах

dc.contributor.advisor TZANG, SHYH-WEIR
dc.contributor.author Enkhbold, Tergelsaran
dc.date.accessioned 2024-10-01T05:46:13Z
dc.date.available 2024-10-01T05:46:13Z
dc.date.issued 2024-10-01
dc.identifier Бакалавр en_US
dc.identifier.uri http://repository.ufe.edu.mn:8080/xmlui/handle/8524/3951
dc.description.abstract Volatility signifies the degree of price variation in financial markets influenced by multiple factors, prompting the development of models and statistical tools to forecast its inherently chaotic nature. The main aim of the paper is to do a comparative analysis of prominent models, GARCH type models and the XGBoost machine learning model, to analyze the suitability of models and to measure and predict the volatility of selected international indices, including the S&P 500 (United States), TAIEX (Taiwan), and MSE TOP-20 (Mongolia). Furthermore, this research explores the applicability and implementation of models using the garch and xgboost package in the R programming language. The empirical result shows that: (1) The sGARCH model was chosen for the S&P 500 and Taiwan indices, while the eGARCH model was found to be more suitable for capturing the volatility dynamics of the MSE Top 20 index due to its optimal performance across RMSE, MSE, MAPE and SMAPE error term metrics. Moreover, the S&P 500 index was modeled with a student-t distribution, TWII with a generalized error distribution, and the MSE Top 20 index with a skew-student t-distribution, leveraging skewness for enhanced accuracy and robustness. (2) The XGBoost shows the superior performance compared to the fitted GARCH models based on the error terms. en_US
dc.subject Volatility, GARCH family models, XGBoost, forecasting, R language en_US
dc.title Predictive accuracy of index volatility: GARCH family models vs. XGBoost Model en_US
ife.Мэргэжил.Нэр Менежмент, санхүүгийн
ife.Мэргэжил.Индекс D340400
ife.Зэрэг Бакалавр
ife.Диплом.Зөвлөх LU, MENG-JOU


Энэ бүтээлд байгаа файлууд

Энэ бүтээл нь дараах бүрдэлд гарч ирнэ.

Товч мэдээллийг харах